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Experiments on elastomechanical wave functions in chaotic plates and their statistical features
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We measure the amplitude of the elastomechanical displacement at a fine grid of points on a free plate
having the shape of a Sinai stadium. The obtained displacement field formally corresponds to a wave function
in a quantum system. While the distribution of the squared amplitudes agrees with the prediction of random
matrix theory~RMT!, there is a strong deviation of the spatial correlator from the standard prediction for
quantum chaotic systems. We show that this is due to the presence of two modes, leading to a beating
phenomenon. We construct a proper extension of the spatial correlator within the framework of RMT.
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I. INTRODUCTION

Attracting interest in the field of quantum chaos, elas
mechanical systems are being studied analytically, num
cally, and experimentally. In 1989, Weaver measured the
few hundred eigenfrequencies of an aluminum block a
worked out the spectral statistics@1#. The transition to chaos
symmetry breaking, and parametric level motion were m
sured in aluminum and quartz blocks@2–4#. For isotropic
plates, important analytical results have been obtained
Bogomolny and Hugues using semiclassical methods@5#.
Some of their results were confirmed in recent experime
@6,7#. In elastomechanical systems, first, the wave equa
involves two types of wave motion~longitudinal and trans-
verse! and, second, free boundary conditions apply in ma
cases. These two features make elastomechanical sys
quite different from the often studied thin microwave ca
ties, which allow for an exact simulation of the two
dimensional Schro¨dinger equation; for reviews see Ref
@8,9#. Nevertheless, the spectral fluctuations of elastom
chanical spectra are universal and follow the prediction
random matrix theory~RMT! for quantum chaotic system
@1–3#. It is our first goal to extend such investigations to t
statistics of the elastomechanical displacement field, wh
we will refer to as a wave function from now on, because
the formal similarity to a quantum system. To this end,
study a freely vibrating isotropic plate of a certain sha
which would, in the case of a quantum billiard, induce ch
otic motion. Does RMT apply to elastomechanical wa
functions as well? In this context, one should be aware t
in the parametric correlator@4#, a statistically significant de
viation was found, whose origin is, at present, still uncle
Our second goal is the study of the spatial correlator for
elastomechanical displacement field. As two modes
present in the system under study, the structure of the w
functions is much richer than in the previously studied m
crowave systems@10,11# ~as analogs of quantum chaot
ones!. Our system is also different from three-dimension
microwave cavities, where the distribution of frequen
shifts, due to the presence of—effectively—random and
dependent electric and magnetic field components, was m
sured in Ref.@12#. Thus, we may expect new features for t
spatial correlator in our experiment.
1063-651X/2003/68~3!/036205~6!/$20.00 68 0362
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The paper is organized as follows. After briefly reviewin
some properties of elastomechanical waves in Sec. II,
describe the experiment in Sec. III. In Sec. IV, we analy
the data and interpret our results. We present our conclus
in Sec. V.

II. SOME PROPERTIES OF
ELASTOMECHANICAL WAVES

In a homogeneous and isotropic three-dimensional m
dium, elastomechanical waves obey the wave equation

r
]2u

]t2
5~l1m!“~“•u!1m¹2u ~1!

for the displacement vectoru. Here,l andm are the Lame´
coefficients,r is the density, and we have assumed no ex
nal forces. For details, see, e.g., Ref.@13#, and references
therein. The Navier equation~1! is different from the scalar
Schrödinger equation for a quantum particle in a tw
dimensional domain both because it is vectorial and beca
the term (l1m)“(“•u) is present. Equation~1! allows two
types of wave motion: longitudinal and transverse.
pointed out by Berry@14#, the vectorial character, implying
the presence of different modes, formally relates elasto
chanics to quantum mechanics for a particle with spin 1.
aluminum, longitudinal waves travel almost twice as fast
transverse waves. In the bulk, the two types of waves pro
gate independently. However, upon reflection at a bound
mode conversiontakes place: an incident wave that is pure
longitudinal or transverse will, in general, give rise totwo
excident waves, one longitudinal and one transverse. M
over, their angles of reflection are different~due to their dif-
ferent velocities!, as described by Snell’s law.

If we consider an infinite plate in the case where the sh
wavelength is larger than twice the thickness of the pla
three classes of modes exist. Theflexuralmodes~also called
bendingmodes! are transverse modes that have displacem
perpendicular to the plane of the plate. At low frequen
these are well described by the Kirchhoff-Love model@13#,
in which Eq.~1! reduces to the scalar biharmonic equatio
©2003 The American Physical Society05-1
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D¹4w1rh
]2w

]t2 50. ~2!

Here,w is the vertical displacement,h is the thickness of the
plate, and D denotes theflexural rigidity, given by D
5Eh3/12(12n2), where E is Young’s modulus andn is
Poisson’s ratio;E and n are functions of the Lame´ coeffi-
cients@13#.

Other modes have displacement in the plane of the p
and are labeledin-plane. These modes are studied in th
Poisson model, where Eq.~1! reduces to a two-dimensiona
equation for the in-plane displacement vector

r
]2u

]t2
5

E

11nF 1

12n
“~“•u!2

1

2
“3“3uG . ~3!

The in-plane modes comprise two classes:in-plane trans-
verse and in-plane longitudinal. The in-plane transvers
modes obey the simple dispersion relationkt52p f /ct ,
wheref is the frequency andct is the transverse velocity, i.e
these waves are nondispersive. Rayleigh and Lamb der
an exact, more complicated, dispersion relation for the fl
ural and in-plane longitudinal modes, see, e.g., Ref.@13#. The
dispersion relations of models~2! and~3! serve as a guide fo
our experimental system; we will use the Rayleigh-Lam
dispersion relation later on to rescale our data. In Fig. 1,
show the dispersion relations for a plate of thickness 3 m
Poisson’s ratio 0.33, and transverse velocity 3100 m/s, wh
are the data for the plate used in recent experiments@6#.

The statements made above strictly apply only to f
wave propagation in infinite, uniform plates. For a fin
plate, mode conversiontakes place at the boundary. How
ever, there is no mode conversion between the flexural
in-plane waves at plate edges because of the up/down s
metry at such edges. The side faces of our experime
plates were accurately machined such that this symmetr
preserved. Therefore, it is reasonable to expect that the
ural modes still comprise a single class of mode, uncoup
from any of the other mode types. This expectation was
cently confirmed by experiment@6,7#. We also note that the
flexural modes, being solutions to a scalar equation and

FIG. 1. The dispersion relations for the three types of mode
an infinite isotropic plate. We notice that, although the longitudi
waves are dispersive, the curvature is too small to be visible in
plot.
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influenced by mode conversion, represent the nearest ela
mechanical analog to the transverse magnetic eigenmod
a flat microwave cavity.

The in-plane waves, on the other hand, do undergo m
conversion at the boundary. The in-plane wave functio
~i.e., standing waves! of a finite system will thus contain
significant amounts of both types of wave motion@7#, except
for special geometries such as the rectangle where bounc
ball states exist@15#.

III. EXPERIMENT

The experimental setup is an extension of the one use
previous experiments@16#. We employ an HP 3589A
spectrum/network analyzer to measure transmission spe
of elastomechanical resonators via piezoelectric transduc
The analyzer is run in scalar mode, implying that phases
not measured. In the present study, the elastomecha
resonator is an aluminum plate of thickness 3 mm, cut in
shape of a quarter Sinai stadium~the geometry introduced in
Ref. @11#! with radii 29 mm and 50 mm. The new ingredie
in the setup is a pickup, which can be accurately position
using an (x,y) scanner, and which holds the receiving tran
ducer. Thus, one can excite a single resonance peak in
transmission spectrum and measure its amplitude as a f
tion of positionR on the plate. Scanning the surface of t
plate in a fine grid then gives a measurement of the ‘‘am
tude landscape’’ of the wave function. The spatial resolut
is 0.5 mm in each direction, which is much smaller than
typical wavelength of 10 mm. The pressure of the surrou
ing air is kept below 1021 Torr, which reduces air damping
to a level where the loss of elastomechanical energy is do
nated by intrinsic losses and losses to the supports. The m
surements are carried out at room temperature. The typicQ
value of a resonance at 0.5 MHz~the typical frequency of a
measured wave function! is 53104.

IV. DATA ANALYSIS AND INTERPRETATION

Regarding our choice of geometry, we are aware that
Sinai stadium billiard is known to be a mixed system, i.
not completely chaotic. We emphasize, however, that the
sults presented here concern the elastomechanical w
equation with free boundaries, as opposed to the sc
Schrödinger equation and fixed boundaries of quantu
billiards.

The statistics and the spatial correlations of the wa
functions are discussed in Secs. IV A and IV B, respective

A. Wave function statistics

From the experimental results for the amplitude of t
wave functions at the pointR in the Sinai stadium plate, we
obtain the distributions of the normalized, squared amplitu
uC(R)u2, which we shall refer to asintensityfrom now on.
Figure 2 shows gray scale plots and distributions for th
measured wave functions, two flexural~318.9 kHz and 425.1
kHz!, and one in plane~510.6 kHz!. Black represents maxi
mum intensity, white represents zero intensity. Since the
placement vector is, for in-plane modes, not in general p
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EXPERIMENTS ON ELASTOMECHANICAL WAVE . . . PHYSICAL REVIEW E 68, 036205 ~2003!
allel to the polarization of the piezo device, we measure
effective projection of its full distribution. For a chaotic ge
ometry, the distribution of the intensitiesuC(R)u2 is ex-
pected to follow the Porter-Thomas law,

P~ uC~R!u2!5
1

2A2puC~R!u2
expS 2

uC~R!u2

2 D , ~4!

see the reviews in Refs.@8,17#. As Fig. 2 demonstrates, w
find excellent agreement with the expected distribution
flexural and in-plane modes. Note that, in our analysis,
decided to exclude points close to the plate’s perimeter,
cause such a free boundary is known to lead to a behavio
the wave functions which would not be covered by Port
Thomas statistics. This is due to exponential, i.e., nonos
latory solutions of the biharmonic equation~2! for the flex-
ural modes; for a discussion see Ref.@5#. These solutions
describe a ‘‘flapping’’ of the plate, which only occurs within
a distance of the order of 1/k from the perimeter.

Closer inspection of the wave functions in Fig. 2 reveal
smattering of individual pixels that are significantly light
than their immediate surroundings; these are most notice
within dark regions of near-to-maximum intensity. We inte
pret such pixels as ‘‘dropouts,’’ arising from poor conta
between the scanning transducer and the plate, presum
due to microscopic irregularities in the plate’s surface~such

FIG. 2. Left: Grayscale plots for three measured wave functio
Two flexural modes~318.9 kHz and 425.1 kHz!, and one in-plane
mode ~510.6 kHz!. To enhance contrast, the grayscale is logar
mic. Black represents maximum intensity, white is zero intens
One notes the complexity of the white structures, usually referre
asnodal lines. Right: Plots showing probability distribution for th
intensity, corresponding to each mode. The step function repres
the measurement while the solid line is the Porter-Thomas distr
tion. Note the log10-scale on the secondary axis.
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as scratches or pits!. As any attempt to correct for such drop
outs would involve arbitrary judgment, we elect to work wi
the raw data as shown. Note that the spatial distribution
the dropouts is uncorrelated with the wave function patt
in all cases. The inclusion of these dropouts in our analy
causes a small transfer of weight in the intensity distribut
from high-intensity to lower-intensity regions, but the effe
is not perceptible. All three intensity distributions in Fig.
show good agreement with the Porter-Thomas distribut
over several decades.

B. Intensity correlator

To obtain information about spatial correlations, o
could measure the wave function correlator. However, as
setup does not yield phase information, we decide to use
spatial intensity correlatorP2(R), which relates intensities a
pointsR1 andR2,

P2~R!5^uC~R1!u2uC~R2!u2&, ~5!

where the brackets denote average over the mean posi
(R11R2)/2. As this also eliminates angular dependence,
correlator is only a function of the distanceR5uR12R2u.
The Bessel function character of such correlators was sh
in Refs.@18,19#, see Refs.@20,21#. One has

P2~r !5112J0
2~r !, ~6!

with J0 denoting the zeroth-order Bessel function. Here,
introduced the dimensionless distancer 5kR, wherek is the
wave number. When parts of the phase space are reg
corrections are needed@22#, as were measured by Kudrolliet
al. @11# in a microwave billiard with disorder. In Fig. 3, we
present our result for correlator~5! of flexural wave func-
tions. Here, we average over four separate wave functio
two of which are shown in Fig. 2. To work out correlator~5!
for a measured flexural wave function, we calculate the w
numberk from the frequency, using the appropriate expa
sion of the dispersion relation for wave propagation alo
the corresponding infinite, uniform plate. We replace t
constant factor of 2 in formula~6! with a variableb, which
we fit to the experimental data. We obtainb51.9360.05.
Thus, we find agreement between the experimental data

s;

-
.
to

nts
u-

FIG. 3. Comparison of flexural data and RMT for the correlati
function P2(r )511bJ0

2(r ). The solid curve represents an avera
over four measured flexural standing waves, while the dashed c
is a fit to these data yieldingb51.9360.05.
5-3
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SCHAADT et al. PHYSICAL REVIEW E 68, 036205 ~2003!
the RMT prediction—as expected because of the agreem
with the Porter-Thomas distribution found above.

We now address the in-plane modes. It will turn out th
the simple form~6! of the correlator is completely destroye
The reason is the presence of two modes. We calcula
prediction for the spatial correlator. To this end, we exte
Srednicki’s approach@23# which builds upon Berry’s conjec
ture @18#. We write the wave function as the sum of tw
waves, e.g., a longitudinal oneC l(R) and a transverse on
C t(R),

C~R!5alC l~R!1atC t~R!, ~7!

where the longitudinal and the transverse wave vectorsk l
andkt are different. We assume no phase shifts. The coe
cientsal andat determine the relative weights. We want
calculate correlator~5! for superposition~7! at two different
points R1 and R2. We assume that the wave function
Cx(Ri) with x5 l ,t andi 51,2 are multivariate Gaussian dis
tributed according to

P;expS 2
1

2 (
x,y,i , j

Cx~Ri !@M 21#xiy jCy~Rj ! D . ~8!

The matrix M is real symmetric and has as elements
averages

Mlil j 5^C l~Ri !C l~Rj !&5 f l~R!,

Mtit j 5^C t~Ri !C t~Rj !&5 f t~R!,

Mlit j 5^C l~Ri !C t~Rj !&5 f lt~R!, ~9!

combining the longitudinal and the transverse wave with
self and the two of them with one another. The functionsf l ,
f t and f lt depend only on the distanceR between the two
points. Normalization requires that we havef l(0)51 and
f t(0)51. There is no such condition onf lt . We note that we
may normalize to unit volume or, in this case, to unit ar
Due to the Gaussian assumption~8!, correlator~5! can be
calculated in a straightforward manner. The result is

P2~R!5@al
2f l~0!12alat f lt~0!1at

2f t~0!#212@al
2f l~R!

12alat f lt~R!1at
2f t~R!#2. ~10!

This can easily be extended to an arbitrary number of mo
For the functionsf l and f t in correlator~10!, we may insert
Berry’s formula@18# for a two-dimensional system, yieldin
f l(R)5J0(klR) and f t(R)5J0(ktR) with kl5uk l u and kt
5uktu. We assume that the longitudinal and the transve
waves are statistically uncorrelated such thatf lt(R)50. For
consistency reasons we should also have the normaliza
al

21at
251. Hence, we arrive at the correlator

P2~R!5112@al
2J0~klR!1at

2J0~ktR!#2, ~11!

which we compare to our experimental data. Figure 4 sho
an average over 21 measured in-plane wave functions, m
sured in the frequency range from 450 kHz to 510 kHz.
compare with prediction~11!, we find it convenient to nor-
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malize the experimental and theoretical result to the long
dinal wave numberkl , thereby introducing the dimension
less distancer 5klR. Figure 1 shows that the dispersio
relation for transverse waves is exactly linear and for lon
tudinal waves linear to a very good approximation in t
frequency range considered. Therefore, the ratiokl /kt re-
mains constant, and no new scale is introduced by avera
over different in-plane wave functions.

The difference between the result here and the case
cussed above, with one type of wave motion, is striking. T
presence of two modes leads to a beating phenomenon
sulting in a much less pronounced structure in the correla
with only some isolated bumps. The interference respons
for this behavior comes in through the measurement, wh
the components of the transverse and the longitudinal
placement fields are projected onto a real number, whic
the voltage produced by the piezoelectric component.

For intermediateR, the theoretical prediction~11! de-
scribes the shape of the experimental result well, in particu
the bumps in the correlator. Since we cannot infer the ab
mentioned projection quantitatively from our data, we adj
the constantsal and at in the predicted correlator~11! in
such a way that these bumps are reproduced in the best
sible way. This led us to putal

25at
250.5. Although the

above mentioned projection is not precisely known, we
still able to justify the approximate size of these numbe
We know from independent calibration that our receivi
transducer is about three times more sensitive to pure ou
plane motion than to pure in-plane motion. The ratio of lo
gitudinal energy to shear energy isk25cl

2/ct
2'3 for a plate,

wherecl5kct5A(2/12n)ct is the plate-longitudinal veloc-
ity. Assuming that the vibrational energy density is prop
tional to the squared wave velocity and to the squared
plitude of vibration, and using that the out-of-plan
amplitude associated with the longitudinal wave is justn
times the longitudinal in-plane displacement, we find th
(Vl11Vl2)/Vt'2/3, where theV’s represent expected, mea
sured voltages associated with the amplitudes of the two
gitudinal displacements and the transverse displacement
spectively. We emphasize that this is a rough estimate.
also note that the relative coupling of the transmitting tra
ducer to the two wave types is of no importance in th

FIG. 4. Comparison of in-plane data and RMT for the corre
tion functionP2(r ) given by Eq.~11! with al

25at
250.5. The solid

curve represents an average over 21 measured in-plane sta
waves, while the dashed curve is the random matrix model. We
that r 5klR is the dimensionless distance, whereR is the distance.
5-4
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FIG. 5. Comparison of numerical data and RMT for the correlation functionP2(r ) given by Eq.~11! with al
250.75 andat

250.25. The
solid curve represents the random matrix model, while the dashed curve is the random superposition of plane waves. The numer
are calculated for two situations: A small system with just six longitudinal wavelengths across the system~a!, resembling the experimenta
situation, and a big system with 50 longitudinal wavelengths across the system~b!.
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context. For a chaotic system such as the Sinai stad
mode conversion distributes the energy to the equilibri
values within a few reflections. This should be compa
to the lifetime of the wave, which spans thousands
reflections.

As for the global structure of the correlator, there is fi
an undershoot betweenr 55 andr 525, and second an ove
shoot for largerr. This can be understood if one takes in
account, first, the finiteness of our system and, second,
boundary conditions. To demonstrate how the undersh
comes about, we present numerical simulations for a rand
superposition of plane waves, where the wave numbers w
chosen to be the same as those in the experiment. Fig
5~a! and 5~b! show the results for a small and for a larg
system, respectively, compared to the theoretical predic
~11!. In Figures 5~a! and 5~b! we have chosen different va
ues for al and at compared to Fig. 4, in order to give a
impression of how the correlator depends on these two c
ficients. While the resulting correlator in the larger syste
agrees perfectly with the theory, there is an undershoot
ible for the small system, exactly of the type found in t
experiment which was of the same size. Although the sim
lation for the small system does show an overshoot, i
much smaller than observed in the experiment. Thus,
conclude that the experimental result for larger values or
reflects the free boundary conditions in our experime
Similar to the flexural modes, discussed in Sec. IV A, t
in-plane modes also have systematic excess amplitude
the boundary region. Hence, at distancesR which are com-
parable to the size of the plate, this contributes to the c
relator. In our numerical simulation, the amplitudes at
boundary are random and therefore do not affect the
relator. Of course, these excess amplitudes will also in
ence the correlator at distancesR comparable to 1/k. In our
opinion, this explains why the structure consisting of the
nearr 52 followed by the bump nearr 53 in the RMT pre-
diction is washed out and thus not visible in the measu
correlator. We do not contribute the undershoot of the c
relator in the intermediate range to this effect just discuss
rather we believe it is due to the finiteness of the system
explained above.

The existence of scanning dropouts in the measured w
functions, as already mentioned in Sec. IV A, adds so
03620
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noise to the spatial correlators shown in Figs. 3 and 4.
can only expect, however, to reveal the RMT prediction
averaging over an ensemble of the correlators for sev
individual wave functions. Thus, the noise injected due to
shortcomings of our experiment is indistinguishable fro
and simply adds to the ensemble noise, i.e., to the one f
the scattering around the averaged result. The experime
correlator in Fig. 4 is remarkably smooth. We interpret th
as an indication that the noise stemming from the presenc
dropouts is marginal compared to the ensemble noise.

V. CONCLUSIONS

We have conducted an experimental study of the w
function statistics of the flexural and in-plane modes o
Sinai stadium shaped aluminum plate. For flexural mod
the wave equation reduces to a scalar biharmonic equa
whereas in-plane modes are solutions to a vectorial w
equation. In the latter case, the wave equation is qualitativ
different from the Schro¨dinger equation for a quantum pa
ticle in a two-dimensional domain. We find accurate agr
ment with RMT for the two quantities under study: the d
tribution of intensity for both mode types and a spat
correlation for the flexural modes. As for the flexural mod
our results for the distribution and spatial correlation of
tensity show, for elastomechanical systems, that the unive
predictions of RMT are valid not only for the spectral flu
tuation statistics, as found in Ref.@1–3#, but also for proper-
ties of the wave functions. As this statement applies to wa
described by a biharmonic, i.e., fourth-order equation,
statistical model of RMT is experimentally proven to be r
bust also in this respect.

Moreover, we have, by investigating a system with tw
different types of modes, demonstrated that the spatial
relator~6! for one type of wave is a somewhat fragile qua
tity. If another type of wave mixes in, the pronounced osc
latory structure is destroyed due to a beating phenomen
We believe that this will also be relevant in many compl
quantum systems where different classes of modes
present. In molecules, for example, one is confronted w
exactly such a situation, as becomes obvious in the Bo
Oppenheimer approximation, which leads to a Hamilton
that explicitly contains such different classes of modes.
5-5
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Note added.After completion of this work, we becam
aware of a recent similar investigation by Doyaet al. @24#
who studied speckle statistics in optical fibers. Refere
@25# contains a derivation of correlator~11! and a compari-
son with data measured in optical fibers.
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